Abstract
A regime-switching Levy framework, where all parameter values depend on the value of a continuous time Markov chain as per Chevallier and Goutte (2017), is employed to study US Corporate Option-Adjusted Spreads (OASs). For modelling purposes we assume a Normal Inverse Gaussian distribution, allowing heavier tails and skewness. After the Expectation-Maximization algorithm is applied to this general class of regime switching models, we compare the obtained results with time series models without jumps, including one with regime switching and one without. We find that a regime-switching Levy model clearly defines two regimes for A-, AA-, and AAA-rated OASs. We find further evidence of regime-switching effects, with data showing relatively pronounced jump intensity around the time of major crisis periods, thereby confirming the presence and importance of volatility regimes. Results indicate that ignoring the complex and dynamic dependence structure in favour of certain model assumptions may lead to a significant underestimation of risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.