Abstract
I adopt a regime shift model to investigate a shift of distribution of each regime during a time series data. Unlike previous studies, I applied three types of distribution to use a regime shift model, i.e., normal, GEV and stable distribution, which allows me to consider a heavy tail regime in the model. From some theoretical basis and empirical results, I find that the regime shift model in stable distribution is best appropriate. I also find that tail index of the innovation and dependence measure move together, implying dependence among a consecutive data may lead extreme event and vice versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.