Abstract

Given the volatile market prices and impending reduction in fuel supplies, electric vehicles (EV) have drawn increasing attention. The electric motor in EVs is an important component because it functions as an engine during acceleration and as a generator during deceleration or braking. Energy is saved in these processes when the kinetic energy is converted into electrical energy, which is then stored in a storage system by a regenerative braking system (RBS). In terms of highly efficient performance, ideal torque and speed, high-powered density, and cost-effective maintenance, brushless DC (BLDC) motors are preferred. This paper aims to explore and propose a seamless and effective method of RBS for a BLDC motor in an EV. In braking mode, the proposed method change the motor to act as a generator even without any additional converter, ultra-capacitor, or a complex winding-changeover technique. In this mechanism, the energy flows to the DC side. By using MATLAB/SIMULINK, the BLDC motor with speed and current controller is simulated. Accordingly, in the deceleration or braking mode, the motor functions as a generator and transports the power to the DC side. The proposed model is validated in both starting or no-load and load conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.