Abstract
A protocol was developed for genetic transformation of somatic embryos derived from juvenile and mature Quercus robur trees. Optimal transformation conditions were evaluated on the basis of the results of transient GUS expression assays with five oak embryogenic lines and a strain of Agrobacterium tumefaciens (EHA105) harbouring a p35SGUSINT plasmid containing a nptII and a uidA (GUS) genes. For stable transformation, embryo clumps at globular/torpedo stages (4-10 mg) were inoculated with EHA105:p35SGUSINT bacterial cultures, cocultivated for 4 days and selected in proliferation medium with 75 mg/l of kanamycin. Putatively transformed masses appeared after 20-30 weeks of serial transfers to selective medium. Histochemical and molecular analysis (PCR and Southern blot) confirmed the presence of nptII and uidA genes in the plant genomes. Transformation efficiencies ranged from up to 2% in an embryogenic line derived from a 300-year-old tree, to 6% in a juvenile genotype. Twelve independent transgenic lines were obtained from these oak genotypes, and transgenic plantlets were recovered and acclimatized into the soil. This is the first demonstration of the production of transformed somatic embryos and regenerated plants from juvenile and mature trees of Q. robur and suggests the possibility of introducing other genetic constructions to develop trees that are tolerant/resistant to pathogens and/or biotic stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.