Abstract
Isogenous grafts of neural lobe and optic nerve and autologous grafts of sciatic nerve were placed into contact with the intrahypothalamically transected hypothalamo-neurohypophysial tract, and their fine structural characteristics examined at various time periods thereafter. The vascular bed of neural lobe grafts is composed primarily of fenestrated capillaries, that are permeable to blood-borne HRP throughout the entire experimental period. The microvasculature of sciatic nerve grafts consists of continuous, as well as fenestrated capillaries, which are similarly permeable to HRP. Fenestrated capillaries and HRP leakage in optic nerve grafts are observed at 10 days, but only in grafts located ventrally in the hypothalamus at 30 days. Neurosecretory axon regeneration is seen only in grafts or adjacent hypothalamus where the blood-brain barrier is breached. Regenerating axons are closely associated with the specific glial cells of the respective graft. Based on these observations, we conclude that blood-borne factors are necessary to initiate and sustain regeneration of transected neurosecretory axons, and that such regeneration occurs only in the presence of glial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.