Abstract

Natural regeneration measurements are the main silvicultural objective in overaged protective forests of the Bavarian Limestone Alps. While manifold problems with these stands, especially the impact of browsing, are widely recognised, the regeneration niches of Norway spruce (Picea abies [L.] Karst.) are insufficiently known. The purpose of this study was to determine favourable combinations of site factors for the development of spruce in small, unfenced canopy gaps, located on Aposerido-Fagetum caricetosum albae forest sites. We recorded the occurrence of spruce saplings (as dependent variable) and of six site factors (as independent variables) on 480 0.5 m2-subplots. In addition, we estimated the coverage of six acid adapted plant species to determine correlations with the humus depth. A binary logistic regression analysis was used to predict the probability of the occurrence of a spruce sapling in dependency of the different site factors. Supported by other studies, we assumed that the supply of solar radiation was adequate for the sufficient regeneration of spruce within the canopy gaps. Other site factors significantly determined the regeneration niches of spruce saplings. More spruce saplings were found near hindrances and on rough surfaces than would be expected from a random occurrence of saplings. These microsite types may have characteristics, especially protection against snow gliding that promotes spruce establishment. A calculated “hindrance index”, which accounted for the number, and the distance of surrounding hindrances might be a good specific value to describe the influence of hindrances on steep slopes. The sapling establishment decreased on thin humus layers. Our assumption for the sites was that thick organic layers might represent a good seedbed for spruce. Decayed dead wood was scarce, but was exceedingly favoured by spruce saplings. Results obtained suggest that the natural regeneration establishment of spruce on steep slopes can be successfully influenced by site factors which inhibit the influence of snow gliding. According to a “positive microsite” concept, we recommend for artificial regeneration measurements with spruce, microsites close to hindrances (e.g. stumps, downed trees) and Vaccinium myrtillus as a predictor for thick, acid humus layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.