Abstract

Herein, we report the successful formulation and refractive index (RI) engineering of poly (vinyl alcohol) (PVA) films with varying amounts viz., 0.5, 1, 2 and 4 wt% lithium zincate (Li2ZnO2) nanoparticles. The as developed nanocomposite (NC) films were structurally characterized by powder X-ray diffraction (P-XRD) studies, that validate the presence of Li2ZnO2 nanofillers in PVA host. While, Li2ZnO2 nanofiller induced changes in morphological behaviors were validated from scanning electron microscopic (SEM) studies. The UV - visible transmittance studies narrate excellent UV (< 400 nm) harvesting abilities of NC films, in conjunction with a near complete visible (> 400 nm) transmittance. The transmittance intensity was found to exhibit a monotonic decrease with nanofiller content, especially in the UV regions. The absorption edges were found to be down-shifted towards lower energy values exhibiting a minimum of 4.42 eV for PVA/4 wt% Li2ZnO2 NC film. Further, the RI of the PVA films showed a gradual increase from 1.72 to 2.21 with an increase in filling levels (FLs) from 0 to 4 wt%. The effect of annealing on optical transmittance and RI of PVA films were also studied at different temperatures. The PVA/Li2ZnO2 NC films were also studied for their light emitting functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.