Abstract

The packing mechanism of the secondary structures (4-alpha-helices and 3(10)-helix) of cytochrome b562 is simulated by the "island model," where the formation of protein structure is accomplished by the growth-type mechanism with the driving force of packing of the long-range and specific hydrophobic interactions. Packing proceeds through the formation of the structure at the nonhelical part, where a lot of hydrophobic pairs are distributed. Consequently, conformation, nearly similar to the native one, is successfully obtained. With the help of this result, the theoretical prediction of the possibility of forming this disulfide mutant (N22C/G82C) of b562 can be performed prior to the experiments by our geometrical criterion ("lampshade"). This criterion is expected to be a significant principle for introducing possible disulfide bonds into a protein to be engineered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.