Abstract

From microcircuits to metamaterials, the micropatterning of surfaces adds valuable functionality. For nonplanar surfaces, incompatibility with conventional microlithography requires the transfer of originally planar micropatterns onto those surfaces; however, existing approaches accommodate only limited curvatures. A microtransfer approach was developed using reflowable materials that transform between solid and liquid on demand, freely stretching to yield transfers that naturally conform down to nanoscale radii of curvature and arbitrarily complex topographies. Such reflow transfer helps generalize microprinting, extending the reach of precision planar microlithography to highly nonplanar substrates and microstructures. With gentle water-based processing, reflow transfer can be applied to a range of materials, with microprinting demonstrated onto metal, plastic, paper, glass, polystyrene, semiconductor, elastomer, hydrogel, and multiple biological surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.