Abstract

Based on the self-alignment principle, a new reflow flip-chip bonding technology for infrared detectors is proposed. By optimizing the dimensions between the under bump metallization (UBM) and the indium bump, 10 µm tall spherical indium balls are achieved firstly. Then the technical parameters of heating temperature and surface pre-treatment are discussed. Thereafter, a new reflow flip-chip bonding technology is applied to the infrared focal plane array (IRFPA) and it results in a 6.7% of the total bad pixel percentage which is dramatically decreased compared with the thermo-compression one of 41.9%. The deduced fatigue life of the IRFPA bonded by the new reflow flip-chip bonding technology is four times longer than that of the thermo-compression one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.