Abstract

By appealing to the reciprocity principle simple expressions are derived for the plane albedo and the transmissivity of a vertically inhomogeneous, plane parallel atmosphere. The plane albedo is shown to equal the angular distribution of the reflected intensity for isotropie Illumination of unit intensity incident at the top of the atmosphere, while the transmissivity equals the angular distribution of the transmitted intensity for isotropie illumination of unit Intensity incident at the bottom of the atmosphere. Chandrasekhar's solution of the planetary problem (including a Lambert reflecting lower boundary) in terms of the solution to the standard problem (no reflecting ground) is extended to apply to an inhomogeneous atmosphere resting on a surface that reflects radiation anisotropically but with no dependence on the direction of incidence (anisotropic Lambert reflector). The computational aspects are discussed and a procedure for computing the planetary albedo and transmissivity Is outlined for a vertically inhomogeneous, anisotropically scattering atmosphere overlying a partially reflecting surface. Numerical verification and illustration are also provided and it is shown that the assumed vertical variation of the single scattering albedo strongly affects the plane albedo but only weakly the transmissivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.