Abstract

Recently, there has been much interest in black hole echoes, based on the idea that there may be some mechanism (e.g. from quantum gravity) that waves/fields falling into a black hole could partially reflect off of an interface before reaching the horizon. There does not seem to be a good understanding of how to properly model a reflecting surface in numerical relativity, as the vast majority of the literature avoids the implementation of artificial boundaries, or applies transmitting boundary conditions. Here, we present a framework for reflecting a scalar field in a fully dynamical spherically symmetric spacetime, and implement it numerically. We study the evolution of a wave packet in this situation and its numerical convergence, including when the location of a reflecting boundary is very close to the horizon of a black hole. This opens the door to model exotic near-horizon physics within full numerical relativity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.