Abstract
A compact T-algebra is an initial T-algebra whose inverse is a final T-coalgebra. Functors with this property are said to be algebraically compact. This is a very strong property used in programming semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such as function space. The construction of compact algebras is usually done in categories with a zero object where some form of a limit-colimit coincidence exists. In this paper we consider a more abstract approach and show how one can construct compact algebras in categories which have neither a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from categories which have both. In doing so, we provide a constructive description of a large class of algebraically compact functors (satisfying a compositionality principle) and show our methods compare quite favorably to other approaches from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.