Abstract

AbstractRecently, aqueous zinc‐based batteries (AZBs) have become a promising candidate for energy storage devices due to the high safety of aqueous electrolytes and the appealing features of Zn anodes, for example, low cost and high theoretical capacity. However, the excessive growth of Zn electrodeposits as well as the uneven stacking of large hexagonal Zn crystal units always render loose and irregular electrodeposition or even dendritic growth, which seriously deteriorates the actual performance of AZBs. Herein, to refine the grain size of Zn electrodeposits, a trace of Pb2+ ions as a novel electrolyte additive is performed to inhibit the growth of Zn grain during the Zn electrodeposition. Owing to the higher adsorption energy of Pb2+ ions on Zn crystal when compared with Zn2+ ions, the strongly positively‐charged Pb2+ ions are tightly absorbed on the typical crystal planes of initially‐formed Zn nuclei, which block the way for the subsequent absorption and electroreduction of Zn2+ ions. As a result, the Pb2+ ions‐containing electrolyte refines the grain size of Zn electrodeposits from 7.43–7.87 μm to 0.88–2.26 μm, and affords a high reversibility of Zn plating/stripping behavior with a high Coulombic efficiency of 99.9 % over 1000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.