Abstract
Recent advancements in seismic data analysis have enhanced our grasp of the seismic heterogeneities near the core–mantle boundary (CMB). Through seismic tomography, persistent lower-mantle structures like the large low shear velocity provinces (LLSVPs) beneath the Pacific and South Africa have been identified. However, variations in the finer-scale features across different models raise questions about their origins. This study utilizes differential travel-time measurements from the USArray, operational across the contiguous United States from 2007 to 2014, to examine the impact of upper-mantle heterogeneities on tomographic models. By averaging the P-wave travel times and calibrating them with diffracted P-waves at the same stations, we mitigate the effects of shallow heterogeneities. The findings confirm that this method accurately maps the seismic anomalies beneath the USArray, consistent with other North American studies. Calibrated Pdiff travel-time data indicate significant anomalies in the mid-Pacific and Bering Sea and lesser anomalies in the northern Pacific, aligning with the global tomographic images. Moreover, the study highlights sharp travel-time variations over short distances, such as those across the northern boundary of the mid-Pacific anomaly, suggesting a chemically heterogeneous Pacific LLSVP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.