Abstract

We study Kusuoka representations of law-invariant coherent risk measures on the space of bounded random variables, which says that any law-invariant coherent risk measure is the supremum of integrals of Average-Value-at-Risk measures. We refine this representation by showing that the supremum in Kusuoka representation is attained for some probability measure in the unit interval. Namely, we prove that any law-invariant coherent risk measure on the space of bounded random variables can be written as an integral of the Average-Value-at-Risk measures on the unit interval with respect to some probability measure. This representation gives a numerically constructive way to bound any law-invariant coherent risk measure on the space of essentially bounded random variables from above and below. The results are illustrated on specific law-invariant coherent risk measures along with numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.