Abstract

Given the real-world deployments of attacker-defender Stackelberg security games, robustness to deviations from expected attacker behaviors has now emerged as a critically important issue. This paper provides four key contributions in this context. First, it identifies a fundamentally problematic aspect of current algorithms for security games. It shows that there are many situations where these algorithms face multiple equilibria, and they arbitrarily select one that may hand the defender a significant disadvantage, particularly if the attacker deviates from its equilibrium strategies due to unknown constraints. Second, for important subclasses of security games, it identifies situations where we will face such multiple equilibria. Third, to address these problematic situations, it presents two equilibrium refinement algorithms that can optimize the defender's utility if the attacker deviates from equilibrium strategies. Finally, it experimentally illustrates that the refinement approach achieved significant robustness in consideration of attackers' deviation due to unknown constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.