Abstract

Rapid and reliable diagnosis is essential in the fight against malaria, which remains one of the most deadly infectious diseases in the world. In the present study we take advantage of a droplet microfluidics platform combined with a novel and user-friendly biosensor for revealing the main malaria-causing agent, the Plasmodium falciparum (P. falciparum) parasite. Detection of the parasite is achieved through detection of the activity of a parasite-produced DNA-modifying enzyme, topoisomerase I (pfTopoI), in the blood from malaria patients. The assay presented has three steps: (1) droplet microfluidics-enabled extraction of active pfTopoI from a patient blood sample; (2) pfTopoI-mediated modification of a specialized DNA biosensor; (3) readout. The setup is quantitative and specific for the detection of Plasmodium topoisomerase I. The procedure is a considerable improvement of the previously published Rolling Circle Enhanced Enzyme Activity Detection (REEAD) due to the advantages of involving no signal amplification steps combined with a user-friendly readout. In combination these alterations represent an important step towards exploiting enzyme activity detection in point-of-care diagnostics of malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.