Abstract
Using a geometrically motivated 8-parameter ansatz through the thickness, we reduce a three-dimensional shell-like geometrically nonlinear Cosserat material to a fully two-dimensional shell model. Curvature effects are fully taken into account. For elastic isotropic Cosserat materials, the integration through the thickness can be performed analytically and a generalized plane stress condition allows for a closed-form expression of the thickness stretch and the nonsymmetric shift of the midsurface in bending. We obtain an explicit form of the elastic strain energy density for Cosserat shells, including terms up to order in the shell thickness h. This energy density is expressed as a quadratic function of the nonlinear elastic shell strain tensor and the bending–curvature tensor, with coefficients depending on the initial curvature of the shell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.