Abstract

BackgroundIn recent years, biological interaction networks have become the basis of some essential study and achieved success in many applications. Some typical networks such as protein-protein interaction networks have already been investigated systematically. However, little work has been available for the construction of gene functional similarity networks so far. In this research, we will try to build a high reliable gene functional similarity network to promote its further application.ResultsHere, we propose a novel method to construct and refine the gene functional similarity network. It mainly contains three steps. First, we establish an integrated gene functional similarity networks based on different functional similarity calculation methods. Then, we construct a referenced gene-gene association network based on the protein-protein interaction networks. At last, we refine the spurious edges in the integrated gene functional similarity network with the help of the referenced gene-gene association network. Experiment results indicate that the refined gene functional similarity network (RGFSN) exhibits a scale-free, small world and modular architecture, with its degrees fit best to power law distribution. In addition, we conduct protein complex prediction experiment for human based on RGFSN and achieve an outstanding result, which implies it has high reliability and wide application significance.ConclusionsOur efforts are insightful for constructing and refining gene functional similarity networks, which can be applied to build other high quality biological networks.

Highlights

  • In recent years, biological interaction networks have become the basis of some essential study and achieved success in many applications

  • What’s more, taking the depth-first traversal experiment on RGFSN, we find that the refined gene functional similarity network have some isolated genes

  • We focus on the global topological properties and the degree distribution of RGFSN

Read more

Summary

Introduction

Biological interaction networks have become the basis of some essential study and achieved success in many applications. Some typical networks such as protein-protein interaction networks have already been investigated systematically. The development of high-throughput measurement techniques such as tandem affinity purification, two-hybrid assays and mass spectrometry, has produced a large number of data, which is the foundation of biological networks [2]. Biological interaction networks, such protein-protein interaction network, gene regulatory networks, metabolic networks have been well studied and systematically.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.