Abstract
Phase contrast MRI (PC-MRI) is an established technique for measuring blood flow velocities in vivo. Although spoiled gradient recalled echo (GRE) PC-MRI is the most widely used pulse sequence today, balanced steady state free precession (SSFP) PC-MRI has been shown to produce accurate velocity estimates with superior SNR efficiency. We propose a referenceless approach to flow imaging that exploits the intrinsic refocusing property of balanced SSFP, and achieves up to a 50% reduction in total scan time. With the echo time set to exactly one half of the sequence repetition time (TE = TR/2), we show that non-flow-related image phase tends to vary smoothly across the field-of-view, and can be estimated from static tissue regions to produce a phase reference for nearby voxels containing flowing blood. This approach produces accurate in vivo one-dimensional velocity estimates in half the scan time compared with conventional balanced SSFP phase-contrast methods. We also demonstrate the feasibility of referenceless time-resolved 3D flow imaging (called "7D" flow) in the carotid bifurcation from just three acquisitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.