Abstract

Interleaved echo-planar imaging (EPI) is an ultrafast imaging technique important for applications that require high time resolution or short total acquisition times. Unfortunately, EPI is prone to significant ghosting artifacts, resulting primarily from system time delays that cause data matrix misregistration. In this work, it is shown mathematically and experimentally that system time delays are orientation dependent, resulting from anisotropic physical gradient delays. This analysis characterizes the behavior of time delays in oblique coordinates, and a new ghosting artifact caused by anisotropic delays is described. “Compensation blips” are proposed for time delay correction. These blips are shown to remove the effects of anisotropic gradient delays, eliminating the need for repeated reference scans and postprocessing corrections. Examples of phantom and in vivo images are shown. Magn Reson Med 41:87-94, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.