Abstract

Sonar imagery plays a significant role in oceanic applications since there is little natural light underwater, and light is irrelevant to sonar imaging. Sonar images are very likely to be affected by various distortions during the process of transmission via the underwater acoustic channel for further analysis. At the receiving end, the reference image is unavailable due to the complex and changing underwater environment and our unfamiliarity with it. To the best of our knowledge, one of the important usages of sonar images is target recognition on the basis of contour information. The contour degradation degree for a sonar image is relevant to the distortions contained in it. To this end, we developed a new no-reference contour degradation measurement for perceiving the quality of sonar images. The sparsities of a series of transform coefficient matrices, which are descriptive of contour information, are first extracted as features from the frequency and spatial domains. The contour degradation degree for a sonar image is then measured by calculating the ratios of extracted features before and after filtering this sonar image. Finally, a bootstrap aggregating (bagging)-based support vector regression module is learned to capture the relationship between the contour degradation degree and the sonar image quality. The results of experiments validate that the proposed metric is competitive with the state-of-the-art reference-based quality metrics and outperforms the latest reference-free competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.