Abstract
AbstractFor the first time, we report calculations of the free energies of activation of cracking and isomerization reactions of alkenes that combine several different electronic structure methods with molecular dynamics simulations. We demonstrate that the use of a high level of theory (here Random Phase Approximation—RPA) is necessary to bridge the gap between experimental and computed values. These transformations, catalyzed by zeolites and proceeding via cationic intermediates and transition states, are building blocks of many chemical transformations for valorization of long chain paraffins originating, e.g., from plastic waste, vegetable oils, Fischer–Tropsch waxes or crude oils. Compared with the free energy barriers computed at the PBE+D2 production level of theory via constrained ab initio molecular dynamics, the barriers computed at the RPA level by the application of Machine Learning thermodynamic Perturbation Theory (MLPT) show a significant decrease for isomerization reaction and an increase of a similar magnitude for cracking, yielding an unprecedented agreement with the results obtained by experiments and kinetic modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.