Abstract

Chromosome rearrangement events are triggered by atypical breaking and rejoining of DNA molecules, which are observed in many cancer-related diseases. The detection of rearrangement is typically done by using short reads generated by next-generation sequencing (NGS) and combining the reads with knowledge of a reference genome. Because structural variations and genomes differ from one person to another, intermediate comparison via a reference genome may lead to loss of information. In this article, we propose a reference-free method for detecting clusters of breakpoints from the chromosomal rearrangements. This is done by directly comparing a set of NGS normal reads with another set that may be rearranged. Our method SlideSort-BPR (breakpoint reads) is based on a fast algorithm for all-against-all comparisons of short reads and theoretical analyses of the number of neighboring reads. When applied to a dataset with a sequencing depth of 100×, it finds ∼ 88% of the breakpoints correctly with no false-positive reads. Moreover, evaluation on a real prostate cancer dataset shows that the proposed method predicts more fusion transcripts correctly than previous approaches, and yet produces fewer false-positive reads. To our knowledge, this is the first method to detect breakpoint reads without using a reference genome. The source code of SlideSort-BPR can be freely downloaded from https://code.google.com/p/slidesort-bpr/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.