Abstract

Guided ultrasonic waves are increasingly used in all those structural health monitoring applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. This article describes a monitoring system based on the generation and detection of the guided ultrasonic waves from an array of sparse transducers. In a round-robin manner, ultrasonic waves are generated and measured from all possible different pairs of excitation and sensing transducers. The ultrasonic signals are then processed using continuous wavelet transform and empirical mode decomposition to extract few damage-sensitive features that enable the detection and localization of damage. With respect to most of the existing guided ultrasonic wave–based methods, the proposed approach does not require to record data from a pristine structure (baseline data), and damage is inferred by examining the selected features obtained from all the possible combinations of actuator–sensor pairs of the array. In this study, the method is validated using commercial finite element software to model the presence of 10 ultrasonic transducers bonded onto an aluminum plate. The results are promising and ongoing studies are focusing on the experimental validation and the application to other waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.