Abstract

When a human or animal reaches out to grasp an object, the brain rapidly computes a pattern of muscular contractions that can acquire the target. This computation involves a reference frame transformation because the target's position is initially available only in a visual reference frame, yet the required control signal is a set of commands to the musculature. One of the core brain areas involved in visually guided reaching is the dorsal aspect of the premotor cortex (PMd). Using chronically implanted electrode arrays in two Rhesus monkeys, we studied the contributions of PMd to the reference frame transformation for reaching. PMd neurons are influenced by the locations of reach targets relative to both the arm and the eyes. Some neurons encode reach goals using limb-centered reference frames, whereas others employ eye-centered reference fames. Some cells encode reach goals in a reference frame best described by the combined position of the eyes and hand. In addition to neurons like these where a reference frame could be identified, PMd also contains cells that are influenced by both the eye- and limb-centered locations of reach goals but for which a distinct reference frame could not be determined. We propose two interpretations for these neurons. First, they may encode reach goals using a reference frame we did not investigate, such as intrinsic reference frames. Second, they may not be adequately characterized by any reference frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.