Abstract

Large strongly correlated systems provide a challenge to modern electronic structure methods, because standard density functionals usually fail and traditional quantum chemical approaches are too demanding. The density-matrix renormalization group method, an extremely powerful tool for solving such systems, has recently been extended to handle long-range interactions on real-space grids, but is most efficient in one dimension where it can provide essentially arbitrary accuracy. Such 1d systems therefore provide a theoretical laboratory for studying strong correlation and developing density functional approximations to handle strong correlation, if they mimic three-dimensional reality sufficiently closely. We demonstrate that this is the case, and provide reference data for exact and standard approximate methods, for future use in this area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.