Abstract
Magnetic resonance imaging-guided radiotherapy (MRIgRT) provides superior soft-tissue contrast and real-time imaging compared with standard image-guided RT, which uses x-ray based imaging. Several groups are developing integrated MRIgRT machines. Reference dosimetry with these new machines requires accounting for the effects of the magnetic field on the response of the ionization chambers used for dose calibration. Here, the authors propose a formalism for reference dosimetry with integrated MRIgRT devices. The authors also examined the suitability of the TPR10 (20) and %dd(10)x beam quality specifiers in the presence of magnetic fields and calculated detector correction factors to account for the effects of the magnetic field for a range of detectors. The authors used full-head and point-source Monte Carlo models of an MR-linac along with detailed detector models of an Exradin A19, an NE2571, and several PTW Farmer chambers to calculate magnetic field correction factors for six commercial ionization chambers in three chamber configurations. Calculations of ionization chamber response (performed with geant4) were validated with specialized Fano cavity tests. %dd(10)x values, TPR10 (20) values, and Spencer-Attix water-to-air restricted stopping power ratios were also calculated. The results were further validated against measurements made with a preclinical functioning MR-linac. The TPR10 (20) was found to be insensitive to the presence of the magnetic field, whereas the relative change in %dd(10)x was 2.4% when a transverse 1.5 T field was applied. The parameters chosen for the ionization chamber calculations passed the Fano cavity test to within ∼0.1%. Magnetic field correction factors varied in magnitude with detector orientation with the smallest corrections found when the chamber was parallel to the magnetic field. Reference dosimetry can be performed with integrated MRIgRT devices by using magnetic field correction factors, but care must be taken with the choice of beam quality specifier and chamber orientation. The uncertainties achievable under this formalism should be similar to those of conventional formalisms, although this must be further quantified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.