Abstract

A global optimizer has been developed, capable of computing the optimal configuration in a probe for spatially resolved reflectance spectroscopy (SRS). The main objective is to minimize the number of detection fibers, while maintaining an accurate estimation of both absorption and scattering profiles. Multiple fibers are necessary to robustify the estimation of optical properties against noise, which is typically present in the measured signals and influences the accuracy of the inverse estimation. The optimizer is based on a robust metamodel-based inverse estimation of the absorption coefficient and a reduced scattering coefficient from the acquired SRS signals. A genetic algorithm is used to evaluate the effect of the fiber placement on the performance of the inverse estimator to find the bulk optical properties of raw milk. The algorithm to find the optimal fiber placement was repeatedly executed for cases with a different number of detection fibers, ranging from 3 to 30. Afterwards, the optimal designs for each considered number of fibers were compared based on their performance in separating the absorption and scattering properties, and the significance of the differences was tested. A sensor configuration with 13 detection fibers was found to be the combination with the lowest number of fibers which provided an estimation performance which was not significantly worse than the one obtained with the best design (30 detection fibers). This design resulted in the root mean squared error of prediction (RMSEP) of 1.411 cm−1 (R2 = 0.965) for the estimation of the bulk absorption coefficient values, and 0.382 cm−1 (R2 = 0.996) for the reduced scattering coefficient values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.