Abstract

Using indium as a test case, we investigate the accuracy of the electron-phonon coupling calculated with state-of-the-art ab initio and many-body theory methods. The ab initio calculations -- where electrons are treated in the local-density approximation, and phonons and the electron-phonon interaction are treated within linear response -- predict an electron-phonon spectral function alpha^2 F(omega) which translates into a relative tunneling conductance that agrees with experiment to within one part in 1000. The many-body theory calculations -- where alpha^2 F(omega) is extracted from tunneling data by means of the McMillan-Rowell tunneling inversion method -- provide spectral functions that depend strongly on details of the inversion process. For the the most important moment of alpha^2 F(omega), the mass-renormalization parameter lambda, we report 0.9 +/- 0.1, in contrast to the value 0.805 quoted for nearly three decades in the literature. The ab initio calculations also provide the transport electron-phonon spectral function alpha_{tr}^2 F(omega), from which we calculate the resistivity as a function of temperature in good agreement with experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.