Abstract

Calculations of the desorption of hydrogen from Pt(110)-(1×2), a surface used to model nanoparticle edge sites, show the activation energy varying strongly with hydrogen coverage, from 0.8 to 0.3eV. The predicted temperature programed desorption spectra agree well with experiments, but the formation of the hydrogen molecules occurs only at two types of sites on the surface even though three peaks are observed. The lowest and highest temperature peaks result from desorption from the same strong binding sites at the ridge, while desorption from the weakest binding trough sites is insignificant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.