Abstract
A signaling pathway involving the extracellular protein Reelin and the intracellular adaptor protein Disabled-1 (Dab1) controls cell positioning during mammalian brain development. Here, we demonstrate that Reelin binds directly to lipoprotein receptors, preferably the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Binding requires calcium, and it is inhibited in the presence of apoE. Furthermore, the CR-50 monoclonal antibody, which inhibits Reelin function, blocks the association of Reelin with VLDLR. After binding to VLDLR on the cell surface, Reelin is internalized into vesicles. In dissociated neurons, apoE reduces the level of Reelin-induced tyrosine phosphorylation of Dab1. These data suggest that Reelin directs neuronal migration by binding to VLDLR and ApoER2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.