Abstract

Studies using transcranial magnetic stimulation have established that patients with Parkinson's disease have increased motor cortex excitability. Relying on current evidence that the redundant-signals effect has its source in the motor system, we investigated whether, as a result of cortical hyperexcitability, Parkinson's disease patients demonstrate an enhancement of this effect. Eight patients with moderately severe Parkinson's disease and nine healthy control subjects participated in a task requiring simple manual responses to visual, auditory, and combined auditory-visual signals. During the task, motor cortex activation was recorded by means of movement-related EEG potentials, while responses were measured via isometric force recordings. The movement-related potentials and the force measures both yielded support for the view that the redundant-signals effect is partially caused in the motor system. However, the facilitatory effect of bimodal as compared to unimodal stimulation (i.e. the redundant-signals effect) was of the same size in Parkinson's disease patients and control subjects, as expressed in latency measures of the movement-related potentials and the force signals. We conclude that the redundant-signals effect is not enhanced in Parkinson's disease and that the mechanisms underlying this effect are probably not influenced by the increased motor cortex excitability found in this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.