Abstract

Reductive metabolism of the hair dye constituent, nitro-p-phenylenediamine (2-nitro-1,4-diaminobenzene, NPDA), and its acetylated metabolite, NPDA N4-acetate, was investigated with rat liver subcellular fractions, microsomes and cytosol. Under anaerobic conditions, these compounds were reduced to their corresponding amines by these fractions. The microsomal nitro-reducing activity was retarded completely by air and strongly by carbon monoxide. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) functioned more effectively than reduced nicotinamide adenine dinucleotide (NADH) as an electron donor in the microsomal reduction of the nitro compounds, and flavin mononucleotide (FMN) gave rise to a marked enhancement in the microsomal activity, especially when added to an anaerobic incubation mixture containing both NADH and NADPH. The cytosolic nitro-reducing activity was attributed to xanthine oxidase, aldehyde oxidase and other unknown enzyme(s), based on the results of cofactor requirements and inhibition experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.