Abstract
In this paper, we propose a new structure for reducing the extent of transverse surface acoustic wave (SAW) leakage for the SAW resonator on a 42° YX-LiTaO3 substrate. Such leakage occurs from the interdigital region toward the busbar region in the SAW resonators. The new structure has a Ta2O5 film outside the interdigital region. This structure can make the SAW velocity in the busbar region lower than the velocity in the interdigital region. Therefore, the new structure could reduce the extent of leakage, and contribute to confine the SAW energy in the interdigital region. This structure was applied in SAW resonators and ladder-type SAW filters fabricated on a 42° YX-LiTaO3 substrate. The insertion loss could be improved by suppressing transverse SAW leakage. This technique could be applied to the fabrication of the filters and duplexers using leaky SAW on a 42° YX-LiTaO3 substrate, and the SAW devices could exhibit excellent performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.