Abstract

We have calculated the energy loss of swift O{sub 2}{sup +}, N{sub 2}{sup +}, and C{sub n}{sup +} (n=2-60) molecular ions moving through an amorphous carbon target. The dielectric formalism is used to evaluate the vicinage effects in the energy loss of the atomic ions that form the molecular projectile, but we take into account that the charge state of these atomic ions is affected by their correlated motion through the target and by the screened Coulomb potential between them. When vicinage effects in the charge state are taken into account, the Coulomb repulsion is weakened, leading to a reduction in the interatomic separations ({approx}3% for N{sub 2}{sup +} and {approx}9% for C{sub 60}{sup +}, both having similar velocities). These charge state effects can be neglected for diatomic molecular ions, but they give rise to a reduction of {approx}8% in the vicinage effects in the energy loss of larger molecular ions with cage like geometrical structures, like C{sub n}{sup +} (n=20,60) projectiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.