Abstract

A 2D rectangular tank subjected to horizontal excitations is used to analyze the effects of sloshing. The tank is fitted with horizontal baffles on two sides to suppress the impact pressure of sloshing by using an air-trapping mechanism. The volume of fluid method is adopted to create sloshing phenomena. Five cases with fixed baffle gaps and various baffle lengths are used to analyze the effects of suppressing the sloshing impact pressure in the tank. The peak pressure values of the cases with baffles are compared with those of the cases without baffles. Results show that the maximum suppression rate achieved is 63.6 % due to air trapping and baffle effects. Baffle ratio (Defined by G/L), a geometrical dimensionless factor, is considered to analyze the effects of baffle length and gap. A baffle ratio of 0.5 results in a 14.2 % reduction in the sloshing impact rate. An increasing amount of air is trapped within the baffle array as BR decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.