Reduction of Proportion of Process-Bearing Phenotype of Microglial Cell Line MG6 by Arachidonic Acid Generated From Exogenous Lysophosphatidylinositol.
Attention has recently been paid to the cross-talk between G protein-coupled receptor 55 for lysophosphatidylinositol as an endogenous agonist and cannabinoid receptors 1 and 2 for 2-arachidonoylglycerol as an endogenous agonists in mammalian neuronal cells. In relation to the functional coupling, in this study, exogenously added 1-arachidonoyl lysophosphatidylinositol (1-20:4 LPI) to MG6, a mouse microglial cell line, was found to be converted to 1-arachidonoyl glycerol (1-20:4 MAG) and arachidonic acid (20:4 FFA), possibly due to the combined action of ecto-lysophospholipaase C activity of glycerophosphodiesterase 3 and extracellular lipase toward MAG. Consistent with the above result, exogenous 1-20:4 MAG was found to be converted to 20:4 FFA by extracellular lipase activity toward MAG in the culture medium of MG6 cells. Not only was exogenous 20:4 FFA incubated with MG6 cells, but also 20:4 FFA produced from the exogenous 1-20:4 MAG and 1-20:4 LPI in the absence of fetal bovine serum, respectively, were postulated to be involved in the reduced population of process-bearing MG6 cells via its entry into the cells and the intracellular conversion of prostaglandins. This hypothesis was supported by our findings showing that the reducing effects of exogenous 1-20:4 LPI, 1-20:4 MAG, and 20:4 FFA were all found to be indomethacin-inhibitable, and that exogenous PGD2, but not PGE2 and PGF2α, was shown to reduce the population of process-bearing MG6 cells cultured without Fetal bovine serum.
- Research Article
152
- 10.1053/j.gastro.2005.05.026
- Aug 1, 2005
- Gastroenterology
Differential Expression of Cannabinoid Receptors in the Human Colon: Cannabinoids Promote Epithelial Wound Healing
- Research Article
6
- 10.3390/ijms232315099
- Dec 1, 2022
- International journal of molecular sciences
Recently, the effects of antibacterial peptides are suggested to have therapeutic potential in Alzheimer's disease. Furthermore, systemic treatment of Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) induced Alzheimer's disease-like neuropathological changes in middle-aged mice. Then, we examined whether human β-defensins (hBDs), antimicrobial peptides produced by the oral mucosa and salivary glands, can suppress Pg LPS-induced oxidative and inflammatory responses by microglia. hBD3 (1 μM) significantly suppressed Pg LPS-induced production of nitric oxide and interleukin-6 (IL-6) by MG6 cells, a mouse microglial cell line. hBD3 (1 μM) also significantly inhibited Pg LPS-induced expression of IL-6 by HMC3 cells, a human microglial cell line. In contrast, neither hBD1, hBD2 nor hBD4 failed to inhibit their productions. Furthermore, hBD3 suppressed Pg LPS-induced p65 nuclear translocation through the IκBα degradation. Pg LPS-induced expression of IL-6 was significantly suppressed by E64d, a cysteine protease inhibitor, and CA-074Me, a known specific inhibitor for cathepsin B, but not by pepstatin A, an aspartic protease inhibitor. Interestingly, hBD3 significantly inhibited enzymatic activities of recombinant human cathepsins B and L, lysosomal cysteine proteases, and their intracellular activities in MG6 cells. Therefore, hBD3 suppressed oxidative and inflammatory responses of microglia through the inhibition of cathepsins B and L, which enzymatic activities are necessary for the NF-κB activation.
- Research Article
7
- 10.3390/ani12213057
- Nov 7, 2022
- Animals : an Open Access Journal from MDPI
Simple SummarySupplementation of the culture media for the in vitro production of bovine embryos with fetal bovine serum (FBS) is associated with inconsistent outcomes. This study replaced FBS in both maturation and embryo culture media by different growth factors. The results show that FBS is dispensable for in vitro maturation, but not gonadotropins. In addition, embryos generated under completely defined conditions (absence of FBS and BSA during oocyte maturation and embryo culture) showed similar in vitro development and survival rate post thawing compared to undefined conditions carrying FBS. Thus, we report a simple defined IVP system for bovine species that generates developmental outcomes and embryos of similar quality than those produced under conditions containing FBS and BSA.Supplementation of the culture media for in vitro production (IVP) of bovine embryos with fetal bovine serum (FBS) is associated with inconsistent outcomes. The present study sought to replace FBS and BSA by insulin-like growth factor 1 (IGF1), fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). In Experiment 1, absence of FBS from maturation medium (MM) did not affect the rate of in vitro maturation, as assessed by the extrusion of the first polar body. However, when gonadotropins and FBS were removed from the MM, the maturation rate was significantly reduced even in the presence of growth factors. Therefore, gonadotropin-supplemented MM medium was established as the base medium for the defined maturation condition. In Experiment 2, the addition of growth factors to gonadotropin-supplemented MM medium supported similar maturation (~90%) compared to the undefined condition (FBS-carrying). In Experiment 3, the addition of growth factors to embryo culture medium showed similar in vitro competence compared to the undefined (FBS) control. In Experiment 4, completely defined conditions (absence of FBS and BSA during in vitro maturation and embryo culture) were tested. A higher cleavage was observed with FGF2 (86%) compared to EGF (77%) and the FBS control (77%), but similar blastocyst rates were observed for FGF2 (24%), EGF (19%) and the FBS control (25%). Embryo quality was similar among groups. Finally, post-thawing survival was higher for FGF2 (94%) compared to the FBS control (77%). Thus, we report a simple defined IVP system for bovine species that generates developmental outcomes and embryos of similar quality than those produced under conditions containing FBS.
- Research Article
179
- 10.1038/srep07989
- Jan 23, 2015
- Scientific Reports
Selective elimination of synaptic connections is a common phenomenon which occurs during both developmental and pathological conditions. Glial cells have a central role in the pruning of synapses by specifically engulfing the degenerating neurites of inappropriate connections, but its regulatory mechanisms have been largely unknown. To identify mediators of this process, we established an in vitro cell culture assay for the synapse elimination. Neuronal differentiation and synapse formation of PC12 cells were induced by culturing the cells with nerve growth factor (NGF) in a serum-free medium. To trigger synapse elimination, the NGF-containing medium was replaced with DMEM containing 10% FBS, and the neurites of PC12 cells degenerated within two days. Co-culturing with MG6 cells, a mouse microglial cell line, accelerated the removal of degenerating neurites of PC12 cells by phagocytosis. When MG6 cells were pre-incubated with exosomes secreted from the differentiated PC12 cells after depolarization, the removal was further accelerated by increasing the expression levels of complement component 3 in the MG6 cells. These results define a role for exosomes as a regulator of synapse elimination and clarify a novel mechanism whereby active synapses promote the pruning of inactive ones by stimulating microglial phagocytosis with exosomes.
- Research Article
22
- 10.1007/bf00184970
- Dec 1, 1989
- Applied Microbiology and Biotechnology
The imperfect fungus Geotrichum candidum produced extracellular lipase in a basic peptone-salt medium. By adding olive oil or Tween 80 to the basic medium the lipase yields could be enhanced and the maximal yields were found with Tween 80, which resulted in a sixfold increase in extracellular lipase activity as compared with basic medium. During the early phase of growth in medium with olive oil the proportion of cell-bound activity was higher than that of extracellular activity, and a delay in the secretion of extracellular lipase was found. The proportion of cell-bound activity from growth in basic medium and in basic medium with Tween 80 was lower than that of extracellular activity during the entire growth phase. Analyses by polyacrylamide gel electrophoresis showed that the lipase activity from growth in all three media could be ascribed to equivalent protein bands at 57 000 and 61 000 daltons. Immunodiffusion showed that the cell-bound preparation contained lipase that was immunologically identical with purified extracellular lipase from G. candidum.
- Research Article
337
- 10.1074/jbc.270.40.23823
- Oct 1, 1995
- Journal of Biological Chemistry
Anandamide (arachidonylethanolamide) is known as an endogenous agonist for cannabinoid receptors. An amidohydrolase, which hydrolyzed anandamide, was solubilized from the microsomal fraction of porcine brain with 1% Triton X-100. The enzyme was partially purified by Phenyl-5PW hydrophobic chromatography to a specific activity of approximately 0.37 mumol/min/mg of protein at 37 degrees C. As assayed with 14C-labeled substrates, the apparent Km value for anandamide was 60 microM, and anandamide was more active than ethanolamides of linoleic, oleic, and palmitic acids. Ceramidase and protease activities were not detected in our enzyme preparation. The purified enzyme also synthesized anandamide from free arachidonic acid in the presence of a high concentration of ethanolamine with a specific activity of about 0.16 mumol/min/mg of protein at 37 degrees C. On the basis of cochromatographies, pH dependence, heat inactivation, and effects of inhibitors such as arachidonyl trifluoromethyl ketone, p-chloromercuribenzoic acid, diisopropyl fluorophosphate, and phenylmethylsulfonyl fluoride, it was suggested that the anandamide amidohydrolase and synthase activities were attributable to a single enzyme protein.
- Research Article
4
- 10.1159/000478736
- Jan 1, 2017
- Kidney and Blood Pressure Research
Background/Aim: Glomerulonephritis due to mesangial proliferation is responsible for renal dysfunction in IgA nephropathy (IgAN), however molecular mechanisms of pathogenesis are not well known. We examined the effect of IgA on Insulin-like Growth Factor-1 (IGF-1) activity, a potent mitogen with vital role in growth and development of children, and IGF-1 receptor (IGF-1R) in cultures of glomerular mesangial cells (GMC). Methods: GMC were isolated from rat kidneys using sieving and enzymatic digestion of tissue homogenates, and cultured in RPMI 1640 medium. GMC cultures were treated with IgA (0-10 µg/ml) in the presence or absence of IGF-1 and fetal bovine serum (FBS), and BrdU incorporation was measured. IGF-1 levels were assayed along with real-time PCR quantification of IGF-1R mRNA. Results: Treatment of GMC with IgA (5 -10 µg/ml) significantly (p < 0.01) increased the BrdU incorporation in the presence or absence of FBS or IGF-1. IgA-mediated effects were more pronounced in IGF-1 treated cells that were significantly (p < 0.01) blocked by pretreatment of cells with IGF-1 receptor antibody or genistein. IgA significantly increased the levels of IGF-1 in culture supernatants and GMC homogenates. IGF-1R mRNA was significantly (p < 0.01) increased in IgA treated cells particularly by co-treatment with IGF-1. Conclusion: These findings show that IgA enhances the IGF-1 activity in GMC via stimulation of IGF-1R gene transcription and suggest a role for IGF-1 in pathogenesis of IgAN.
- Research Article
24
- 10.1159/000341426
- Sep 8, 2012
- Cells Tissues Organs
We have established that human tenocytes can differentiate in the absence of exogenous fetal bovine serum (FBS) but in the presence of insulin-like growth factor-1 (IGF-1) and transforming growth factor-β<sub>3</sub> (TGF-β<sub>3</sub>). The extent of tenocyte differentiation was assessed by examining cell survival, collagen synthesis, cell morphology and expression of tenocyte differentiation markers such as scleraxis (Scx), tenomodulin (Tnmd), collagen type I (Col-I) and decorin (Dcn). Our results indicate that 50 ng/ml IGF-1 and 10 ng/ml TGF-β<sub>3</sub> (in the absence of FBS) were capable of maintaining in vitro human tenocyte survival in 14-day cultures. The extent of collagen synthesis and messenger ribonucleic acid expression of Scx, Tnmd, Col-I and Dcn were significantly upregulated in response to IGF-1 and TGF-β<sub>3</sub>. These findings have shown for the first time that human tenocytes can be maintained in long-term culture, in serum-free conditions, making this approach a suitable one for the purpose of tendon tissue engineering.
- Research Article
51
- 10.1111/j.1471-4159.2007.04570.x
- Mar 12, 2007
- Journal of Neurochemistry
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.
- Research Article
6
- 10.1016/j.bbrc.2022.09.109
- Oct 3, 2022
- Biochemical and Biophysical Research Communications
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobe involved in the pathogenesis of chronic periodontitis, including local inflammation of the oral cavity. However, periodontal disease has recently been identified as a significant factor in the pathogenesis of neural diseases, including Alzheimer's disease. A virulence factor, P. gingivalis-lipopolysaccharide (LPS-PG), is involved in pro-inflammatory responses, not only in peripheral tissues but also in the brain. In this study, we examined whether P. gingivalis-induced brain inflammation could be ameliorated by pharmacotherapy, using in vivo and in vitro studies. In an animal experiment, peripheral administration of LPS-PG induced inflammation in the hippocampus via microglial activation, which was inhibited by pre-treatment with the antidepressant imipramine. Similarly, LPS-PG-induced inflammation in MG-6 cells, a mouse microglial cell line, was inhibited by pre-treatment with imipramine, which caused imipramine-induced inhibition of NF-κB signaling. Culture media obtained from LPS-PG-treated MG-6 cells induced neuronal cell death in Neuro-2A cells, a mouse neuroblastoma cell line, which was prevented by pre-treatment of MG-6 cells with imipramine. These results indicate that imipramine inhibits LPS-PG-induced inflammatory responses in microglia and ameliorates periodontal disease-related neural damage.
- Research Article
8
- 10.1556/abiol.58.2007.suppl.9
- Nov 1, 2007
- Acta Biologica Hungarica
Numerous studies have shown functional links between the cannabinoid and opioid systems. The goal of this study was to evaluate whether acute treatments by endogenous cannabinoid agonist, selective CB1 or CB2 receptor antagonists modulate the expression of mu- (MOR) and delta- (DOR) opioid receptor mRNA levels and functional activity in the cerebellum of transgenic mice deficient in the CB1 type of cannabis receptors. We examined the effect of noladin ether (endogenous cannabinoid agonist) pretreatment on MOR and DOR mRNA expression by using reverse transcription and real-time polimerase chain reaction (PCR) and the ability of subsequent application of the opioid agonists to activate G-proteins, as measured by [35S]GTPgammaS binding, in wild-type (CB1+/+) and CB1 cannabinoid receptor deficient (CB1-/-, 'knockout', K.O.) mice. The acute administration of noladin ether markedly reduced MOR-mediated G-protein activation and caused a significant increase in the level of MOR mRNAs in the cerebella of wildtype, but not in the CB1-/- mice. No significant differences were observed in DOR functional activity and mRNA expression in wild-type animals. In CB1-/- mice the expression of DOR mRNA increased after noladin ether treatment, but no changes were found in DOR functional activity. In addition, Rimonabant (selective central cannabinoid CB1 receptor antagonist) and SR144528 (selective peripheral cannabinoid CB2 receptor antagonist) caused significant potentiation in MOR functional activity in the wild-type animals, whereas DOR mediated G-protein activation was increased in the CB1-/- mice. In contrast, Rimonabant and SR144528 decreased the MOR and DOR mRNA expressions in both CB1+/+ and CB1-/- mice. Taken together, these results indicate that acute treatment with cannabinoids causes alterations in MOR and DOR mRNA expression and functional activity in the cerebella of wild-type and CB1 knockout mice indicating indirect interactions between these two signaling systems.
- Research Article
43
- 10.1194/jlr.c500006-jlr200
- Jul 1, 2005
- Journal of Lipid Research
Prostaglandins and endogenous cannabinoid metabolites share the same lipid backbone with differing polar head groups at exactly the position through which a large molecule is attached to provide antigenicity and thus raise antisera. Hence, we hypothesized that antisera raised against prostaglandins linked to a large molecule such as BSA at the carboxyl functional group would also recognize endogenous cannabinoid metabolites and lead to highly misleading interpretations of data. We found major cross-reactivity of commercial antisera raised to prostaglandins with endocannabinoid metabolites. Furthermore, in a well-characterized cell line (WISH) or primary amnion tissue explants, endocannabinoid treatment led to increased production of endocannabinoid metabolites as opposed to primary prostaglandins. This was apparent only after separation of products by thin-layer chromatography, because they measured as prostaglandins by radioimmunoassay. These findings have major implications for our interpretation of data in situations in which these prostaglandin-like molecules are formed, and they stress the need for chromatographic or spectrometric confirmation of prostaglandin production detected by antibody-based methods.
- Research Article
3
- 10.1111/cbdd.14592
- Jul 1, 2024
- Chemical biology & drug design
Neuroinflammation is suggested as one of the potential links between CS-induced neuronal dysfunction. Cigarette smoke (CS) is one of the significant contributors of neuroinflammation, consequently leading to cognitive impairment and neurodegeneration. Microglia are the key resident macrophage cells in the brain with cell surface TLR4 receptor for responding to various stress signals. The CS constituents promote inflammation and oxidative stress in microglia leading to cytotoxicity through the TLR4-MK2 axis. However, the role of MK2 kinase in CS-induced microglial inflammation is not yet clearly understood. Therefore, we have used an MK2 inhibitor, PF-3644022 to study modulation of CS-extract induced oxidative and inflammatory signaling in a mouse microglial cell line, Furthermore, we also evaluated the enzymatic activity of acetylcholinesterase (AChE) on a direct exposure of enzyme with CS. CS exposure led to microglial cytotoxicity and enhanced the level of oxidative stress and proinflammatory cytokine release by microglial cells. The microglial cells pretreated with MK2 inhibitor, PF-3644022 significantly reduced the levels of oxidative stress markers, proinflammatory markers, and improved the level of antioxidant proteins in these cells. In addition, direct exposure of CS showed reduction in the enzymatic activity of AChE.
- Research Article
62
- 10.1194/jlr.m700388-jlr200
- Aug 1, 2008
- Journal of Lipid Research
Cystic fibrosis (CF) is associated with fatty acid alterations characterized by low linoleic and docosahexaenoic acid. It is not clear whether these fatty acid alterations are directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction or result from nutrient malabsorption. We hypothesized that if fatty acid alterations are a result of CFTR dysfunction, those alterations should be demonstrable in CF cell culture models. Two CF airway epithelial cell lines were used: 16HBE, sense and antisense CFTR cells, and C38/IB3-1 cells. Wild-type (WT) and CF cells were cultured in 10% fetal bovine serum (FBS) or 10% horse serum. Fatty acid levels were analyzed by GC-MS. Culture of both WT and CF cells in FBS resulted in very low linoleic acid levels. When cells were cultured in horse serum containing concentrations of linoleic acid matching those found in human plasma, physiological levels of linoleic acid were obtained and fatty acid alterations characteristic of CF tissues were then evident in CF compared with WT cells. Kinetic studies with radiolabeled linoleic acid demonstrated in CF cells increased conversion to longer and more-desaturated fatty acids such as arachidonic acid. In conclusion, these data demonstrate that CFTR dysfunction is associated with altered fatty acid metabolism in cultured airway epithelial cells.
- Research Article
2
- 10.1080/10826060902953442
- May 19, 2009
- Preparative Biochemistry & Biotechnology
Candida rugosa is an excellent source of multiple lipase and esterase enzymes; therefore, it is of technological importance to formulate the medium that provides high activity for each enzyme. In this work, the cultivation medium comprising complex nutrients that provided the highest activity, productivity, and yield of C. rugosa enzymes individually was formulated. Time courses of the extracellular and intracellular lipase and esterase activities of C. rugosa were represented and the role of protease in the cultivation progress was discussed. Urea, soy-peptone, yeast extract, a mixture of soy-peptone and yeast extract, cheese whey, and wheat mill bran were tested for their lipolytic and esterasic activities. Urea provided considerably higher extracellular lipase activity when compared to other nitrogen sources; however, soy-peptone provided the highest extracellular esterase activity. Hazelnut, olive, sesame, soybean, and flax seed oils affected the enzyme activities to different extents related to their fatty acid compositions. Hazelnut oil and olive oil provided the highest extracellular lipase and esterase activities, respectively, whereas sesame oil produced the highest biomass. High C18 and C16 ester contents of vegetable oils promoted high lipase and esterase productions, respectively. A temperature of 30°C yielded the highest extracellular and intracellular lipase and esterase activities; however, 35°C produced the highest biomass.
- New
- Research Article
- 10.1002/lipd.70016
- Nov 5, 2025
- Lipids
- New
- Research Article
- 10.1002/lipd.70017
- Nov 4, 2025
- Lipids
- Research Article
- 10.1002/lipd.70006
- Oct 29, 2025
- Lipids
- Research Article
- 10.1002/lipd.70014
- Oct 23, 2025
- Lipids
- Research Article
- 10.1002/lipd.70015
- Oct 17, 2025
- Lipids
- Research Article
- 10.1002/lipd.70013
- Oct 13, 2025
- Lipids
- Research Article
- 10.1002/lipd.70004
- Oct 7, 2025
- Lipids
- Research Article
- 10.1002/lipd.70011
- Oct 3, 2025
- Lipids
- Research Article
- 10.1002/lipd.70012
- Sep 25, 2025
- Lipids
- Research Article
- 10.1002/lipd.70010
- Sep 21, 2025
- Lipids
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.