Abstract

The research is conducted in order to reduce energy losses caused by the secondary flow in the endwall junction. This phenomenon is caused by the interaction of two adjacent viscous flow (symmetric airfoil and endwall). Reduction of energy loss carried out by addition of Foward Facing Step Turbulator (FFST) in the upstream. Endwall junction area is modeled as a NACA 0015 airfoil and a flat plate. Position of FFST is at a distance L = 2/3 C upstream leading edge and a thickness d = 4% C. Free stream conditions Red = 105 with turbulence intensity (Tu) 5%. Research is conducted by numerical and experiment methods. Pathlines of numerical result methods has an identic structure with "Oil Flow Visualization" of the experiment.Result of the research states that the addition of FFST can increase the turbulence intensity in the flow near the wall. So at the same angle of attact (α), the saddle point position on the leading edge has distance nearly the same but a little more towards the lower side and the separation line is wider than without FFST. Because the flow has stronger turbulence intensity, attachment line of the upper and lower sides have a better capability of following the contours of the body. So the point of separation can be delayed and blockage (energy loss) can be reduced as well. Reduction of energy loss is most effective on α=8 ° (4.16%),Keyword : Secondary flow, forward facing step, turbulent intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.