Abstract

In chronic kidney disease (CKD), peritubular capillaries undergo anatomic and functional alterations, such as rarefaction and increased permeability. The endothelial glycocalyx (EG) is a carbohydrate-rich gel-like mesh, which covers the luminal surface of endothelial cells. It is involved in many regulatory functions of the endothelium, including vascular permeability. Herein, we investigated ultrastructural alterations of the EG in different murine CKD models. Fluorescence staining using different lectins with high affinity to components of the renal glycocalyx revealed a reduced binding to the endothelium in CKD in the animal models, and there were similar finding in human kidney specimens. We used the Lanthanum Dysprosium Glycosamino Glycan adhesion staining technique to visualize the ultrastructure of the glycocalyx in transmission electron microscopy. This also enabled quantitative analyses, showing a significant reduction of the EG thickness and density. In addition, mRNA expression of proteins involved in glycocalyx biology, synthesis, and turnover (ie, syndecan 1 and glypican 1), which are main components of the glycocalyx, and exostosin 2, involved in the synthesis of the glycocalyx, were significantly up-regulated in endothelial cells isolated from murine CKD models. Visualization of glycocalyx using specific transmission electron microscopy analyses allows qualitative and quantitative analyses and revealed significant pathologic alterations in peritubular capillaries in CKD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.