Abstract

The early embryo of the cockroach Blattella germanica exhibits high E93 expression. In general, E93 triggers adult morphogenesis during postembryonic development. Here we show that E93 is also crucial in early embryogenesis in the cockroach, as a significant number of E93-depleted embryos are unable to develop the germ band under maternal RNAi treatment targeting E93. Moreover, transcriptomic analysis indicates that E93 depletion results in important gene expression changes in the early embryo, and many of the differentially expressed genes are involved in development. Then, using public databases, we gathered E93 expression data in embryo and preadult stages, finding that embryonic expression of E93 is high in hemimetabolan species (whose juveniles, or nymphs, are similar to the adult) and low in holometabolans (whose juveniles, or larvae, are different from the adult). E93 expression is also low in Thysanoptera and in Hemiptera Sternorrhyncha, hemimetabolans with postembryonic quiescent stages, as well as in Odonata, the nymph of which is very different from the adult. In ametabolans, such as the Zygentoma Thermobia domestica, E93 transcript levels are very high in the early embryo, whereas during postembryonic development they are medium and relatively constant. We propose the hypothesis that during evolution, a reduction of E93 expression in the embryo of hemimetabolans facilitated the larval development and the emergence of holometaboly. Independent decreases of E93 transcripts in the embryo of Odonata, Thysanoptera, and different groups of Hemiptera Sternorrhyncha would have allowed the development of modified juvenile stages adapted to specific ecophysiological conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.