Abstract
In this paper, a method was demonstrated to reduce the dislocation density of GaN film grown by hydride vapor phase epitaxy (HVPE) on an in situ selective hydrogen-etched GaN/sapphire template. The dislocations regions were etched by hydrogen to form cavities. The porous structure was formed on the GaN template grown by metal organic chemical vapor deposition after in situ hydrogen etching. The etching condition was optimized by modulating the etching temperature, pressure, and etching time. Two-step buffer layer growth and high temperature GaN film deposition were carried on the porous template. The growth parameters were optimized to keep the porous structure unfilled. The dislocations originally located in etched cavities could not propagate to the next layer grown by HVPE. Therefore, the dislocation density could be significantly reduced. High crystal quality of GaN is obtained with a low dislocation density. The full width at half-maximum FWHM of (002) is 35 arcs, and the FWHM of (102) is 48 arcs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.