Abstract

The utilization of carbon dioxide is one of the developing areas due to its significant contribution to global warming. Reducing carbon dioxide (CO2) to formic acid and its derivatives has gained importance because of its thermodynamic limitations and high industrial demand. In this article, we report the synthesis of dimethylformamide (DMF) using ruthenium doped Mg/Al calcined hydrotalcite by CO2 hydrogenation in the presence of dimethylamine (DMA). At optimized conditions, complete conversion of dimethylamine was achieved with more than 92% product yield at 170 °C and 13 MPa pressure with a reaction time of 6 h. Key catalyst properties were determined using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO2-temperature programmed desorption (TPD), H2 temperature-programmed reduction (TPR) and Fourier transform infrared (FTIR). The determination of surface morphology was carried out using field emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). At the same time, the chemical composition was verified by energy-dispersive X-ray (EDS). In addition, kinetic modeling is performed using the two site Langmuir-Hinshelwood-Hougen-Watson model. The regressed kinetic parameters gave an appropriate fit with experimental concentration values and activation energy is calculated as 413 kJ/mol K−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.