Abstract
Numerical investigations are carried out to investigate the reduction in the aerodynamic drag of a vehicle by employing a dimpled non-smooth surface. The computational scheme was validated by the experimental data reported in literature. The mechanism and the effect of the dimpled non-smooth surface on the drag reduction were revealed by analysing the flow field structure of the wake. In order to maximize the drag reduction performance of the dimpled non-smooth surface, an aerodynamic optimization method based on a Kriging surrogate model was employed to design the dimpled non-smooth surface. Four structure parameters were selected as the design variables, and a 16-level design-of-experiments method based on orthogonal arrays was used to analyse the sensitivities and the influences of the variables on the drag coefficient; a surrogate model was constructed from these. Then a multi-island genetic algorithm was employed to obtain the optimal solution for the surrogate model. Finally, the surrogate model and the simulation results showed that the optimal combination of design variables can reduce the aerodynamic drag coefficient by 5.20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.