Abstract

Aqueous zinc batteries are appealing devices for cost-effective and environmentally sustainable energy storage. However, the critical issues of uncontrolled dendrite propagation and side reactions with Zn anodes have hindered their practical applications. Inspired by the functions of the rosin flux in soldering, an abietic acid (ABA) layer is fabricated on the surface of Zn anodes (ABA@Zn). The ABA layer protects the Zn anode from corrosion and the concomitant hydrogen evolution reaction. It also facilitates fast interfacial charge transfer and horizontal growth of the deposited Zn by reducing the surface tension of the Zn anode. Consequently, promoted redox kinetics and reversibility are simultaneously achieved by the ABA@Zn. It demonstrates stable Zn plating/stripping cycling over 5100 h and a high critical current of 8.0 mA cm-2. Moreover, the assembled ABA@Zn|(NH4)2V6O16 full cell delivers outstanding long-term cycling stability with an 89% capacity retention after 3000 cycles. This work provides a straightforward yet effective solution to the key issues of aqueous zinc batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.