Abstract

The fundamental procedure of analyzing sequence content is sequence comparison. Sequence comparison can be defined as the problem of finding which parts of the sequences are similar and which parts are different, namely comparing two sequences to identify similarities and differences between them. A typical approach to solve this problem is to find a good and reasonable alignment between the two sequences. The main research in this project is to align the DNA sequences by using the Needleman-Wunsch algorithm for global alignment and Smith-Waterman algorithm for local alignment based on the Dynamic Programming algorithm. The Dynamic Programming Algorithm is guaranteed to find optimal alignment by exploring all possible alignments and choosing the best through the scoring and traceback techniques. The algorithms proposed and evaluated are to reduce the gaps in aligning sequences as well as the length of the sequences aligned without compromising the quality or correctness of results. In order to verify the accuracy and consistency of measurements obtained in Needleman-Wunsch and Smith-Waterman algorithms the data is compared with Emboss (global) and Emboss (local) with 600 strands test data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.