Abstract
Spray drift, as a practical issue during Unmanned Aerial Vehicle (UAV) spraying, has a negative impact on the environment, and the use of air-induction nozzles or anti-drift adjuvants are the most common recommendations for reducing drift. To screen the adjuvants for favourable atomization performance and anti-drift effect, we evaluated the spray atomization performance of different adjuvants by the droplet size measurement system. From the wind tunnel results, we commented on the relationship among the atomization performance, drift distance and drift deposition, and determined the drift percentage of different nozzles and the surface tension of liquids with different adjuvants. The results showed that the addition of adjuvants would modify the distribution span S, ΦVol<150μm and the volume medium diameter D50; ΦVol<150μm and D50 of the Maifei treatment decreased and increased the most of all the treatments. There were negative correlations between the drift distance, D50 and percentage of drift amount. The adjuvants Maifei and the nozzle IDK120-015 significantly decreased the drift deposition amount. And the anti-drift effect of nozzle IDK120-015 plus Maifei was significantly stronger than that of other nozzles or adjuvants. In addition, the addition of adjuvants could significantly decrease the surface tension, especially for Maifei. These results suggest that the addition of Maifei is an effective way to reduce the spray drift for all nozzle types and lessen the surface tension. These data help to provide a theoretical basis for selecting suitable nozzles and adjuvants for plant protection UAVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.