Abstract

Sluggish kinetics of the multielectron transfer process is still a bottleneck for efficient oxygen evolution reaction (OER) activity, and the reduction of reaction overpotential is crucial to boost reaction kinetics. Herein, a correlation between the OER overpotential and the cobalt-based electrode composition in a "Microparticles-in-Spider Web" (MSW) superstructure electrode is revealed. The overpotential is dramatically decreased first and then slightly increased with the continuous increase ratio of Co/Co3 O4 in the cobalt-based composite electrode, corresponding to the dynamic change of electrochemically active surface area and charge-transfer resistance with the electrode composition. As a proof-of-concept, the optimized electrode displays a low overpotential of 260 mV at 10.0 mA cm-2 in alkaline conditions with a long-time stability. This electrochemical performance is comparable and even superior to the most currently reported Co-based OER electrocatalysts. The remarkable electrocatalytic activity is attributed to the optimization of the electrochemically active sites and electron transfer in the MSW superstructure. Theoretical calculations identify that the metallic Co and Co3 O4 surface catalytic sites play a vital role in improving electron transport and reaction Gibbs free energies for reducing overpotential, respectively. A general way of boosting OER kinetics via optimizing the electrode configurations to mitigate reaction overpotential is offered in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.