Abstract

Current calculation methods for the carbon content as received (Car) of coal rely on multiple instruments, leading to high costs for enterprises. There is a need for a cost-effective model that maintains accuracy in CO2 emission accounting. This study introduces an MISM model using key parameters identified through correlation and ablation analyses. An Improved State-Space Model (ISSM) and an IS-Mamba module are integrated into a Multi-Layer Perceptron (MLP) framework, enhancing information flow and regression accuracy. The MISM model demonstrates superior performance over traditional methods, reducing the Root Mean Square Error (RMSE) by 22.36% compared to MLP, and by 9.65% compared to Mamba. Using only six selected parameters, the MISM model achieves a precision of 0.27% for the discrepancy between the calculated CO2 emissions and the actual measurements. An ablation analysis confirms the importance of certain parameters and the effectiveness of the IS-Mamba module at improving model performance. This paper offers an innovative solution for accurate and cost-effective carbon accounting in the thermal power sector, supporting China's carbon peaking and carbon neutrality goals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.